

CoMeMoV: Collaborative Memory Models

for formal Verification

Grant: ANR-22-CE25-0018

D1.a: Selected case studies

Planned Date of Delivery June 30, 2023

Actual Date of Delivery September 21, 2023 (presentation); June 1, 2024 (complete

report)

Deliverable Security Class N/A

Editor Axel FERREOL

Contributors Téo BERNIER, Nikolaï KOSMATOV, Yani ZIANI

Contents

Executive summary 3

Introduction 4

1 Heterogeneous pointer casts 5
1.1 Reading a heterogeneous cast pointer 5
1.2 Writing to a heterogeneous cast pointer 5
1.3 Casts in the specification . 7

2 BitFields 8

3 Union structures 12

4 Nested structures 12

5 Dynamic memory allocation 14

6 Separation of the allocation status of heap and local vari-
ables 16

7 Stack example 16

List of Figures 20

References 21

2

Executive summary

The objective of this report is to present case studies highlighting the chal-
lenges of applying deductive verification due to the memory model used by
Frama-C.

This report is the result of two tasks led by TRT. First, Task 1.1 fo-
cused on selecting real-world security-critical case studies where some proof
difficulties have been observed in the earlier proof attempts, and some new
ones to be verified. They will be selected both from proprietary code and
open-source code. Secondly, Task 1.2 focused on providing a code base illus-
trating the problems that need new memory modeling solutions and where
the soundness of the verification is difficult to ensure with the currently
available tools.

3

Introduction

This report is a result of work-package WP1 that focused on analysis of re-
quirements for deductive verification of real-life industrial C code. Its results
will guide the following technical work-packages. First, a set of real-world
security-critical case studies was selected by TRT, including case studies
where some proof difficulties have been observed in the earlier proof at-
tempts, and some new ones to be verified. They include the JavaCard
Virtual Mathine of Thales and the TPM2-TSS library. Based on the se-
lected case studies, TRT created a list of representative code patterns (on a
companion repository, deliverable D1.b) illustrating the problems with the
currently available tools. These code patterns will be used by the other
partners in technical work-packages.

Code patterns are shared between partners. All the following case studies
were tested with Frama-C v27.1.

4

1 Heterogeneous pointer casts 1

Heterogeneous pointer casts, a frequent operation in low-level efficient code
like in [1], involve converting pointers of one type to another where the
alignment requirements are different. Demonstrating the correctness of code
involving such casts is crucial. However, the Frama-C Wp plugin currently
cannot handle these casts. Recent efforts, notably in [1], have found ways to
work around this limitation by rewriting heterogeneous pointer casts with
equivalent expressions not containing such casts. Our goal is for Wp to
automatically verify code with heterogeneous pointer casts without code
rewriting.

1.1 Reading a heterogeneous cast pointer

A typical scenario involves reading from a cast pointer, as illustrated in Fig.
1. In this example, we have created a basic function that takes an unsigned

short as input, writes it byte per byte into a global unsigned char array,
casts the array to an unsigned short array, and returns its content.

Our objective is to demonstrate that this function correctly returns the
value of the unsigned short provided as an argument.

The example in Fig. 1 was tested with Frama-C’s default memory
model. We noticed that Wp is unable to verify the specification. Indeed,
Wp raises a warning related to l.13 in Fig. 1: Cast with incompatible
pointers types (source: uint8*) (target: uint16*).

The proof obligation generated by Wp (Fig 2) shows the limits of the
Typed memory model which can not simultaneously see array as an unsigned
char array and an unsigned short array, that is why it does not take into
account the writings into array at l.11 and l.12 and sees the unsigned

short array as a new array at address w.

1.2 Writing to a heterogeneous cast pointer

Heterogeneous pointer casts are also encountered in the target of an assign-
ment expression, as demonstrated in Fig. 3. In this example, we have cre-
ated a function that casts a global unsigned char array into an unsigned

short array and then writes an unsigned short argument into it.
Our goal is to verify that the array indeed holds the value passed as an

argument once the function completes.
The example in Fig. 3 was tested with Frama-C’s default memory

model. We also noticed thatWp is unable to verify the specification. Indeed,

1The examples described in this section are contained in the
heterogeneous pointer cast subfolder of the companion repository (deliverable
D1.b).

5

1 typedef unsigned char u8;

2 typedef unsigned short u16;

3

4 u8 array [2];

5 /*@

6 requires \valid(array +(0..1));

7 assigns array [0..1];

8 ensures G: \result == v;

9 */

10 u16 read_value(u16 v)

11 {

12 array [0] = v & 0xff;

13 array [1] = (v >> 8) & 0xff;

14 return ((u16 *) array)[0];

15 }

Figure 1: Mock function involving reading from a heterogeneous cast
pointer. Note that the u16 is written into the u8 array respecting the little
endian convention, as it is Frama-C’s default architecture. This code is
available in heter read.c.

1 Goal Post -condition ’G’:

2 Let x = Mint_0[shift_uint16(w, 0)].

3 Assume { Type: is_uint16(v) /\ is_uint16(x). }

4 Prove: x = v.

Figure 2: Proof obligation of the property G of function read_value of Fig.
1 with Frama-C’s default memory model.

6

1 typedef unsigned char u8;

2 typedef unsigned short u16;

3

4 u8 array [2] ;

5 /*@

6 requires \valid(array +(0..1));

7 assigns array [0..1];

8 ensures G: *(u16*) array == v;

9 */

10 u16 write_value(u16 v){

11 *(u16*)array = v;

12 return 0;

13 }

Figure 3: Mock function involving writing to heterogeneous cast pointer.
This code is available in heter write.c.

1 Goal Post -condition ’G’:

2 Let x = Mint_0[w <- v][w_1]. Assume { Type:

is_uint16(v) /\ is_uint16(x). }

3 Prove: x = v.

Figure 4: Proof obligation of the property G of function write_value of Fig.
3 with Frama-C’s default memory model.

Wp raises a warning related to l.8 and l.11 in Fig. 3: Cast with incompatible
pointers types (source: uint8*) (target: uint16*).

The proof obligation generated by Wp in Fig 4 shows the limits of the
Typed memory model which incorrectly gives different addresses (w and w_1)
to the global variable array.

1.3 Casts in the specification 2

The specification of code often involves pointer casts. This is all the more
frequent as it occurs in the specification of libraries. A common example is
seen in the memcpy function where the specification expresses properties over
its arguments cast as char *, see Fig. 5. However, code may call memcpy
with unsigned char* parameters, as shown in Fig. 6.

Wp raises a warning about the cast: Cast with incompatible pointers
types (source: uint8*) (target: sint8*) and is unable to verify the precondi-
tion valid_src of memcpy.

2A real life example can be found in byte level.c and is a copy of WP1/
tpm2-tss-examples/byte level operations/byte level.c

7

1 /*@

2 predicate valid_read_or_empty{L}(void *s, size_t

n) =

3 (empty_block(s) ∨ \valid_read ((char *)s)) ∧
4 \valid_read ((char *)s + (1 .. n - 1));

5 /*

6

7 /*@

8 requires valid_src: valid_read_or_empty(src , n);

9 ...

10 */

11 void *memcpy(void * restrict dest ,

12 void const * restrict src , size_t n);

Figure 5: Part of the contract of memcpy. The parameter src is cast to
char * in the requirement valid_read_or_empty. This code can be found
in Frama-C default library: FRAMAC SAHRE/libc/string.h/memcpy.

The proof obligation generated by Wp in Fig 7 shows the limits of the
Typed memory model which incorrectly gives different addresses (buff_0
and w) to respectively (uint8*)buff and (sint8*)buff.

2 BitFields 3

Bitfields are extensively utilized in low-level and efficient code, as they offer
a cost-effective means of storing information. For instance, in [1], bitfields
are used to encode various flags. Verifying code involving bitfields is crucial.
However, Wp is unable to deal with bitfields. Recent efforts, notably in [1],
have addressed this limitation by introducing ghost variables for each bit and
utilizing interactive scripts. Nonetheless, this approach entails annotation
overhead and diminishes scalability, particularly on large code bases. Our
objective is to enable Wp to automatically verify code containing bitfield
structures.

A typical situation arises when one tries to set a field in a bitfield struc-
ture, as shown in Fig. 8. In this example, we have developed a function
that initializes the first field of a bitfield with a value passed as argument.

We want to prove that the bitfield structure was correctly set.
The example in Fig. 8 was tested with Frama-C’s default memory

model. We noticed that Wp is unable to reason on bitfields. Indeed, as
shown in the proof obligation (Fig. 9), Wp does not take into account the

3The examples described in this section are contained in the bitfields subfolder of
the companion repository (deliverable D1.b).

8

1 /*@

2 requires \valid(offset) ∧ 0 ≤ *offset ≤ UINT8_MAX

- sizeof(in);

3 requires buff_size > 0 ∧ \valid (&buff [0] + (0 ..

buff_size - 1));

4 requires *offset ≤ buff_size ∧ sizeof(in) +

*offset ≤ buff_size;

5 requires \separated(offset , buff);

6

7 assigns *offset , (&buff[* offset])[0.. sizeof(in) -

1];

8

9 ensures *offset == \old(* offset) + sizeof(in);

10 ensures \result == 0;

11 */

12 int uint32_Marshal(uint32_t in ,uint8_t

buff[],size_t buff_size ,size_t *offset){

13 size_t local_offset = 0;

14 if (offset ̸= NULL){local_offset = *offset ;}

15 in = HOST_TO_BE_32(in);

16 memcpy (&buff[local_offset], &in , sizeof (in));

17 if (offset ̸= NULL){* offset = local_offset +

sizeof (in);}

18 return 0;

19 }

Figure 6: Function from the TPM software stack, calling memcpy. The
complete code is available in byte level.c

9

1 Goal Definition (Unfold ’shift_sint8 ’):

2 Let m = Malloc_0[P_in_965 <- 1].

3 Let x = Mint_0[offset_0].

4 Assume {

5 Type: is_uint64_chunk(Mint_0) /\

is_uint64(buff_size_0) /\ is_uint64(x).

6 (* Heap *)

7 Type: (region(buff_0.base) ≤ 0) /\

(region(offset_0.base) ≤ 0) /\

8 linked(Malloc_0).

9 (* Residual *)

10 When: null ̸= offset_0.

11 (* Pre -condition *)

12 Have: (0 ≤ x) /\ (x ≤ 251) /\ valid_rw(Malloc_0 ,

offset_0 , 1).

13 (* Pre -condition *)

14 Have: (0 < buff_size_0) /\ valid_rw(Malloc_0 ,

shift(buff_0 , 0), buff_size_0).

15 (* Pre -condition *)

16 Have: (x ≤ buff_size_0) /\ ((4 + x) ≤
buff_size_0).

17 (* Pre -condition *)

18 Have: offset_0 ̸= buff_0.

19 (* Assertion ’rte ,mem_access ’ *)

20 Have: valid_rd(m, offset_0 , 1).

21 }

22 Prove: valid_rw(m, shift(w, 0), 4).

Figure 7: Proof obligation of valid_src of memcpy called in Fig. 6 with
Frama-C’s default memory model.

10

1 struct __struct_bit {

2 unsigned char b0 : 1 ;

3 unsigned char b1 : 1 ;

4 unsigned char b2 : 1 ;

5 unsigned char b3 : 1 ;

6 unsigned char b4 : 1 ;

7 unsigned char b5 : 1 ;

8 unsigned char b6 : 1 ;

9 unsigned char b7 : 1 ;

10 };

11

12 struct __struct_bit flags;

13

14 /*@

15 assigns flags.b0;

16 ensures G: flags.b0 == (v & 1);

17 */

18 int set_b0(unsigned char v){

19 flags.b0 = v;

20 return 0;

21 }

Figure 8: Mock function involving a bitfield operation. Note that Frama-C
does not specify the order of bitfields in memory. This code is available in
bf.c.

11

1 Goal Post -condition ’G’:

2 Assume { Type: is_uint8(v). }

3 Prove: land(1, v) = v.

Figure 9: Proof obligation of the property G of function set_b0 of Fig. 8
with Frama-C’s default memory model.

number of bits of the field b0 on the assignment of l.19, instead it considers
b0 as an unsigned char.

We also tried with the Hoare memory model of Frama-C unsuccessfully.

3 Union structures 4

Unions are also frequently used in low-level code because they allow multiple
types to be stored at the lowest memory cost. However, Wp is unable to
reason on unions. Our objective is to enable Wp to automatically verify
code containing union structures.

A typical situation arises with a union structure comprising a bitfield and
a byte. In this scenario, the bits are set via the byte representation, and
the bits are accessed through the bitfield view, as shown in Fig. 10. In this
example, we have developed a function that initializes the union through its
byte-view with a value provided as argument.

Our goal is the verify that the bits (fields) of the bitfield view match the
value passed as an argument.

The example in Fig. 10 was tested with Frama-C’s default memory
model. We noticed that Wp is unable to reason on union fields. Indeed,
it raises a warning: Accessing union fields with Wp might be unsound. In
the proof obligation (Fig. 11), we can observe that Wp does not take into
account the memory view of the union, as it did not add any property related
to the assignment l.27 in the context of the proof.

We also tried with the Hoare memory model of Frama-C unsuccessfully.

4 Nested structures 5

Many industrial codes use nested structures, where structures are nested
within other structures. In such contexts, a frequent objective is to demon-
strate the preservation of an array of these nested structures. However,
automatic provers fail to verify such a goal, particularly with deeply nested

4The examples described in this section are contained in the union structures sub-
folder of the companion repository (deliverable D1.b).

5The examples described in this section are contained in the nested structures
subfolder of the companion repository (deliverable D1.b) and are copies from WP1/
tpm2-tss-examples/struct union.

12

1 struct __struct_bit {

2 unsigned char b0 : 1 ;

3 unsigned char b1 : 1 ;

4 unsigned char b2 : 1 ;

5 unsigned char b3 : 1 ;

6 unsigned char b4 : 1 ;

7 unsigned char b5 : 1 ;

8 unsigned char b6 : 1 ;

9 unsigned char b7 : 1 ;

10 };

11

12 union __union_flags

13 {

14 struct __struct_bit bit;

15 unsigned char byte;

16 };

17

18 union __union_flags flag;

19

20 /*@

21 assigns flag;

22 ensures flag.bit.b0 == v % 2;

23 ensures G: flag.bit.b1 == (v>>1) % 2;

24 //...

25 */

26 int set_byte(unsigned char v){

27 flag.byte = v;

28 return 0;

29 }

Figure 10: Mock function involving operations over a union. This code is
available in union.c.

13

1 Goal Post -condition ’G’:

2 Let a = flag_0.F2___union_flags_bit.

3 Let x = a.F1___struct_bit_b1.

4 Assume {

5 Type: is_uint8(v) /\

is_uint8(a.F1___struct_bit_b0) /\ is_uint8(x).

6 (* Heap *)

7 Type: IsU2___union_flags(flag_0).

8 }

9 Prove: x = (lsr(v, 1) % 2).

Figure 11: Proof obligation of the property G of function set_byte of Fig.
10 with Frama-C’s default memory model.

structures, as highlighted in [2]. Recent research, as cited in [2], addressed
this challenge by employing manual scripts to assist the prover. Our aim is
to enable automatic verification of these goals.

A typical example from [2] consists in a function modifying one cell
within an array of a nested structure. We want to prove that, aside from the
specific location where the cell was modified, the array remains unchanged.

While the automatic provers struggled to prove the goal generated by
Wp, employing a script tactic proved much more effective. This tactic
involves recursively unfolding the equalities and verifying them individually
through the automatic prover. The efficiency stems from eventually applying
the automatic prover on sub-goals rather than directly on the main goal.

5 Dynamic memory allocation 6

Dynamic memory allocation is frequently used in code. While the contracts
of dynamic memory allocator functions can be precisely expressed by acsl
clauses (see Fig. 12), their specification includes clauses that are not sup-
ported by Wp. Recent work, as referenced in [2], addressed this issue by
representing the heap as a global array in the code. Our goal is for Wp to
handle such clauses effectively.

The malloc specification in Fig. 12 employs the \fresh{Old, Here}

(\result,\old(size)) clause at l.8, which is not supported by Wp, as
indicated by the error message: Allocation, initialization and danglingness
not yet implemented.

6The examples described in this section are contained in the
dynamic memory allocation subfolder of the companion repository (deliverable
D1.b) and are copies from WP1/tpm2-tss-examples/dynamic allocation.

14

1 /*@ assigns __fc_heap_status , \result;

2 assigns __fc_heap_status \from size ,

__fc_heap_status;

3 assigns \result \from (indirect: size),

(indirect: __fc_heap_status);

4 allocates \result;

5

6 behavior allocation:

7 assumes can_allocate: is_allocable(size);

8 ensures allocation: \fresh{Old ,

Here}(\result ,\old(size));

9 assigns __fc_heap_status , \result;

10 assigns __fc_heap_status \from size ,

__fc_heap_status;

11 assigns \result \from (indirect: size),

(indirect: __fc_heap_status);

12

13 behavior no_allocation:

14 assumes cannot_allocate: !is_allocable(size);

15 ensures null_result: \result == \null;

16 assigns \result;

17 assigns \result \from \nothing;

18 allocates \nothing;

19

20 complete behaviors no_allocation , allocation;

21 disjoint behaviors no_allocation , allocation;

22 */

23 extern void *malloc(size_t size);

Figure 12: Contract of malloc in acsl. This code can be found in Frama-C
default library: FRAMAC SAHRE/libc/stdlib.h/malloc.

15

6 Separation of the allocation status of heap and
local variables 7

The Typed memory model of Wp uses single tables for different types,
regardless of the variable scope. Consequently, global and local variables
are represented within the same tables. This causes predicates over global
variables to be affected by modification of local variables, hindering simple
proofs. Our goal is to enable automatic proofs of predicates involving global
variables when they are unaffected by local code.

A typical example, see Fig. 13, illustrates this issue. A predicate over a
global variable is set as a precondition, and we want to check its validity at
the beginning of a function. Inside the function, a local variable is referenced.
Although the predicate is trivially true initially, provers fail to verify it.

A workaround involves rewriting the code to encapsulate problematic
variables within an anonymous block and define intermediary variables to
keep the function body updated with the changes inside that block, see Fig.
14. Another workaround consists in writing lemmas stating the predicate.
It scales up well but requires significant effort in Coq to prove.

Our goal is for Wp to handle this case automatically.
This failure occurs because the predicate involves a \valid clause, mak-

ing it dependent on the allocation table. Additionally, any new variable
passed by reference within the function body will have an entry in the al-
location table (provided that it is used in properties to be proved), which
then gets modified. Consequently, the initial predicate depends on a new,
modified allocation table, complicating otherwise trivial proofs.

7 Stack example 8

Recently, in the context of [1] we worked on verifying code that implements
a stack. We encountered several challenges during the proof of its specifica-
tions, which we illustrated with a toy example, where words are represented
by stamps and function contexts by collections of stamps.

In this example, the code allows adding or removing stamps to or from a
collection of stamps and adding or removing collections. Adding or removing
a stamp is analogous to pushing or popping from the stack, while adding or
removing a collection is similar to calling or returning from a function. To

7The examples described in this section are contained in the separation variables
subfolder of the companion repository (deliverable D1.b). A real life exam-
ple is allocation table.c and is a copy from WP1/tpm2-tss-examples/
allocation table/allocation table.c.

8The examples described in this section are contained in the stack subfolder of
the companion repository (deliverable D1.b). Especially, the code of the stack can
be found in stack.c, and its rewritten version (enabling the proof to succeed) in
stack rewritten.c.

16

1 /*@

2 requires linked_ll(rsrc_list , NULL ,

node_to_ll(rsrc_list , NULL));

3 ...

4 */

5

6 int dummyCaller(LIST * rsrc_list , LIST ** out_node)

7 {

8 /*@ assert linked_assert :

9 linked_ll(rsrc_list , NULL ,

node_to_ll(rsrc_list , NULL));*/

10 // Non proved

11 int r;

12 LIST *test_node;

13 r = dummyCallee(rsrc_list , &test_node);

14 return r;

15 }

Figure 13: Mock function where the local variable test_node is in conflict
with the arguments. The complete is available in sep var.c.

1 /*@

2 requires linked_ll(rsrc_list , NULL ,

node_to_ll(rsrc_list , NULL));

3 ...

4 */

5

6 int dummyCaller(LIST * rsrc_list , LIST ** out_node)

7 {

8 /*@ assert linked_assert :

9 linked_ll(rsrc_list , NULL ,

node_to_ll(rsrc_list , NULL));*/

10 // Proved

11 int r;

12 {

13 LIST *test_node = NULL;

14 r = dummyCallee(rsrc_list , &test_node);

15 }

16 return r ;

17 }

Figure 14: Rewriting version of the function in Fig. 13 to avoid conflicts
between local variables and arguments. The complete code is available in
sep var rewriting.c.

17

1 typedef struct RegistryCellTag {

2 uchar CollectionSize; //size of the collection

3 uchar CollectionMaxSize; // maximum size of the

collection

4 } RegistryCell ;

Figure 15: Definition of RegistryCell type from stack.c.

keep track of previous collections, a second stack (the registry stack) stores
local information (registry cells) about the already stacked collections of
stamps enabling to restore the context of a stored collections when necessary.

In that example, the registry cell is represented by a structure with two
uchar fields (see Fig. 15): CollectionOffset stores the size of the collection
and CollectionMaxSize stores the maximum size of the collection. Since
each collection directly follows the previous one, knowing the beginning of
the latest collection and the size of each collection allows us to locate the
start of every collection.

The registry cell is read or written into an array of ushort (the registry
stack) via a pointer cast, see Fig. 16. AsWp does not support heterogeneous
pointer casts, code rewriting is necessary to complete the proof, see Fig 17.
In that version, the first field is stored in the first byte and the field in the
second byte, we kept that convention for reading too.

Compared to Fig. 16, both writings are made simultaneously in Fig.
17 to facilitate the proof; otherwise (as shown in Fig 18) Wp struggles.
In addition, few assertions are necessary to conduct the rest of the proof
correctly, see Fig 19.

Ideally, we would like to avoid such transformations.

18

1 /* Writing */

2 ((RegistryCell *) NextFreeRegister)->CollectionSize =

3 NextFreeCell - CurrentCollectionStart;

4 ((RegistryCell *)

NextFreeRegister)->CollectionMaxSize =

5 CurrentCollectionMaxSize;

6 /*...*/

7

8 /* Reading */

9 CurrentCollectionStart -=

10 ((RegistryCell *) NextFreeRegister)->CollectionSize;

11 CurrentCollectionMaxSize =

12 ((RegistryCell *) NextFreeRegister)->CollectionMaxSize;

Figure 16: Writing and reading a registry cell in the registry stack via
pointer cast. NextFreeRegister points to the next registry cell available in
the registry stack. These are code excerpts from stack.c.

1 /* Writing */

2 *NextFreeRegister = (NextFreeCell -

CurrentCollectionStart)

3 + (CurrentCollectionMaxSize << 8);

4 /*...*/

5

6 /* Reading */

7 CurrentCollectionStart -= *NextFreeRegister & 0xff;

8 CurrentCollectionMaxSize = *NextFreeRegister >> 8;

Figure 17: Rewritten versions of Fig. 16 without pointer cast. These are
code excerpts from stack rewritten.c.

1 *NextFreeRegister = (NextFreeCell -

CurrentCollectionStart)

2 + ((* NextFreeRegister) & 0xff00);

3 *NextFreeRegister = ((* NextFreeRegister) & 0xff)

4 + (CurrentCollectionMaxSize << 8);

Figure 18: Rewritten version of the writing statement of Fig. 16 where Wp
struggles. The complete code is available in stack struggle.c

19

1 //@ assert (* NextFreeRegister & 0xff) ==
current_collection_size;

2 //@ assert (* NextFreeRegister >> 8) ==
CurrentCollectionMaxSize;

Figure 19: Additional assertions necessary to prove the rewriting in Fig. 17
from stack rewritten.c.

List of Figures

1 Mock function involving reading from a heterogeneous cast
pointer. Note that the u16 is written into the u8 array re-
specting the little endian convention, as it is Frama-C’s de-
fault architecture. This code is available in heter read.c. . 6

2 Proof obligation of the property G of function read_value of
Fig. 1 with Frama-C’s default memory model. 6

3 Mock function involving writing to heterogeneous cast pointer.
This code is available in heter write.c. 7

4 Proof obligation of the property G of function write_value

of Fig. 3 with Frama-C’s default memory model. 7
5 Part of the contract of memcpy. The parameter src is cast to

char * in the requirement valid_read_or_empty. This code
can be found in Frama-C default library: FRAMAC SAHRE/
libc/string.h/memcpy. 8

6 Function from the TPM software stack, calling memcpy. The
complete code is available in byte level.c 9

7 Proof obligation of valid_src of memcpy called in Fig. 6 with
Frama-C’s default memory model. 10

8 Mock function involving a bitfield operation. Note that Frama-
C does not specify the order of bitfields in memory. This code
is available in bf.c. 11

9 Proof obligation of the property G of function set_b0 of Fig.
8 with Frama-C’s default memory model. 12

10 Mock function involving operations over a union. This code
is available in union.c. 13

11 Proof obligation of the property G of function set_byte of
Fig. 10 with Frama-C’s default memory model. 14

12 Contract of malloc in acsl. This code can be found in
Frama-C default library: FRAMAC SAHRE/libc/stdlib.h/
malloc. 15

13 Mock function where the local variable test_node is in con-
flict with the arguments. The complete is available in sep var.c.
. 17

20

14 Rewriting version of the function in Fig. 13 to avoid conflicts
between local variables and arguments. The complete code is
available in sep var rewriting.c. 17

15 Definition of RegistryCell type from stack.c. 18
16 Writing and reading a registry cell in the registry stack via

pointer cast. NextFreeRegister points to the next registry
cell available in the registry stack. These are code excerpts
from stack.c. 19

17 Rewritten versions of Fig. 16 without pointer cast. These are
code excerpts from stack rewritten.c. 19

18 Rewritten version of the writing statement of Fig. 16 where
Wp struggles. The complete code is available in stack struggle.c
. 19

19 Additional assertions necessary to prove the rewriting in Fig.
17 from stack rewritten.c. 20

References

[1] Djoudi, A., Hána, M., Kosmatov, N.: Formal Verification of a JavaCard
Virtual Machine with Frama-C. In: Proc. of the 24th International Sym-
posium on Formal Methods (FM 2021). LNCS, vol. 13047, pp. 427–444.
Springer (2021)

[2] Ziani, Y., Kosmatov, N., Loulergue, F., Gracia Pérez, D., Bernier,
T.: Towards formal verification of a TPM software stack. In: Proc. of
the 18th International Conference on integrated Formal Methods (iFM
2023). LNCS, vol. 14300, pp. 93–112. Springer (Nov 2023)

21

	Executive summary
	Introduction
	Heterogeneous pointer casts
	Reading a heterogeneous cast pointer
	Writing to a heterogeneous cast pointer
	Casts in the specification

	BitFields
	Union structures
	Nested structures
	Dynamic memory allocation
	Separation of the allocation status of heap and local variables
	Stack example
	List of Figures
	References

